top of page
suugakusha

算数と数学28 &「特別企画:問題を解いて図書カードを当てよう!」

更新日:8月1日

こんにちは!


特別企画:問題を解いて図書カードを当てよう!


☆今回は、算数と数学22【第1問】~算数と数学28【第7問】の7つの問題のうち1問、または、算数と数学22~28のどこかにある【オマケ問題】1問のいずれかを選び、お答えください。お答えいただく問題は1問のみです。

ハガキに郵便番号・住所・お名前・ご連絡先、解いた問題の【問題番号】または【オマケ問題】とその【答え】、「ホームページ※」と明記し、下記の宛先までご応募ください。


〒902ー0068

沖縄県那覇市真嘉比2丁目6-6

すうがくしゃ事務局


締め切り/2023年12月18日(月):当日消印有効


★当選者は12月23日(土)ホームページ「お知らせ」にて掲載します。


※琉球新報、沖縄タイムス紙面掲載枠を最初に見てこのページにたどり着いた方は、

「ホームページ」ではなく

「琉球新報」または「沖縄タイムス」と明記し、ご応募ください。



さて、【第7問】で、今回の数學舎オリジナル問題は一旦終了となります。

またいつか、数多くある問題の中から厳選し、掲載したいと思っています。

ではでは、どうぞお楽しみください♪



【第7問】


A,B,Cの3人が、次のようにジャンケンを繰り返し、誰かが2連勝したところで終了する。ただし、あいこの場合も、対戦回数としてカウントする。


①1回目は、AとBが対戦する。

②2回目以降は

・直前の回の対戦であいことなった場合、その回と同じ2人で対戦する。

・直前の回の対戦で(誰も2連勝せず)勝敗が決まった場合、その回の勝者と参加しなかった残りの1人とで対戦する。


このような条件の下で、次の問いに答えよ。


n回目の対戦で、誰も2連勝せず、勝敗が決まる確率をP

n回目の対戦で、誰も2連勝せず、あいことなる確率をq

(nは正の整数)とする。このとき、


lim(p/q

n→∞


を求めよ。(p/qは、分子p、分母qの分数)



またジャンケンの問題です。が、

この【第7問】は、高校数学ⅠAの「場合の数・確率」、数ⅡBの「数列」、数Ⅲの、「極限」の知識が必要とされます。

3人でこのようなゲームを行う問題は、大学入試でも古くから出題されていますが、その問題を「あいこ」があるジャンケンの問題として作ってみたものです。

この問題1問を作るのにも、かなりの時間がかかりました。

ぜひ挑戦してみてください。



次回更新は12月21日(木)を予定しています。

「特別企画:問題を解いて図書カードを当てよう!」

の解答として、算数と数学22【第1問】~算数と数学28【第7問】の解答も、まとめて掲載いたします。

お楽しみに!


そしてそして、次回更新のあとには、またまた冬期講座が始まります。

今年は12月21日(木)の更新で最後となります。

来年の最初の更新は1月25日(木)頃を予定しています。


それではまた!











【オマケ問題】


数字を次のように並べます。


1,2,4,8,16,32,64,128,256,512,1024,2048,・・・


これを、1番目は1、2番目は2、3番目は4、・・・

7番目の64は6+4=10、1+0=1のように、各位の数字を足し続け、1桁の数字として表します。よって7番目の数字は「1」となります。

12番目の2048は2+0+4+8=14、1+4=5。よって「5」となります。

では、100番目の数字はいくつになるでしょう。




閲覧数:191回0件のコメント

最新記事

すべて表示

算数と数学27

こんにちは! 引き続き、今回を含めあと2回、数學舎オリジナル問題の一部を公開いたします。 どうぞお楽しみください♪

特別企画:解答とプレ解説編/算数と数学22【第1問】~算数と数学28【第7問】解答編&【オマケ問題】

こんにちは! 算数と数学のお話。数學舎(すうがくしゃ)は、沖縄県那覇市にある算数・数学専門塾。受験予備校です。 さて、今回は「特別企画」算数と数学22【第1問】~算数と数学28【第7問】の7つの問題の解答と【オマケ問題】の解答・解説編です。

算数と数学29

こんにちは! 前回まで「数學舎オリジナル問題」を紹介してきましたが、「整数」の単元からあと2題紹介いたします。 この「整数」と言う単元は、2024年度の新課程から消えてしまいますが、過去「整数」の単元がなかった課程でも、国立2次試験には数多く出題されているため、今後も学ばな...

Commentaires


bottom of page